20 research outputs found

    Mapping the world's coral reefs using a global multiscale earth observation framework

    Get PDF
    Coral reefs are among the most diverse and iconic ecosystems on Earth, but a range of anthropogenic pressures are threatening their persistence. Owing to their remoteness, broad spatial coverage and cross‐jurisdictional locations, there are no high‐resolution remotely sensed maps available at the global scale. Here we present a framework that is capable of mapping coral reef habitats from individual reefs (~200 km2) to entire barrier reef systems (200 000 km2) and across vast ocean extents (>6 000 000 km2). This is the first time this has been demonstrated using a consistent and transparent remote sensing mapping framework. The ten maps that we present achieved good accuracy (78% mean overall accuracy) from multiple input image datasets and training data sources, and our framework was shown to be adaptable to either benthic or geomorphic reef features and across diverse coral reef environments. These new generation high‐resolution map data will be useful for supporting ecosystem risk assessments, detecting change in ecosystem dynamics and targeting efforts to monitor local‐scale changes in coral cover and reef health

    Transmission Mode Predicts Specificity and Interaction Patterns in Coral-Symbiodinium Networks

    Get PDF
    Most reef-building corals in the order Scleractinia depend on endosymbiotic algae in the genus Symbiodinium for energy and survival. Significant levels of taxonomic diversity in both partners result in numerous possible combinations of coral-Symbiodinium associations with unique functional characteristics. We created and analyzed the first coral-Symbiodinium networks utilizing a global dataset of interaction records from coral reefs in the tropical Indo-Pacific and Atlantic Oceans for 1991 to 2010. Our meta-analysis reveals that the majority of coral species and Symbiodinium types are specialists, but failed to detect any one-to-one obligate relationships. Symbiont specificity is correlated with a host's transmission mode, with horizontally transmitting corals being more likely to interact with generalist symbionts. Globally, Symbiodinium types tend to interact with only vertically or horizontally transmitting corals, and only a few generalist types are found with both. Our results demonstrate a strong correlation between symbiont specificity, symbiont transmission mode, and community partitioning. The structure and dynamics of these network interactions underlie the fundamental biological partnership that determines the condition and resilience of coral reef ecosystems. Š 2012 Fabina et al
    corecore